Cutting lengths for full wave wire dipoles
For metric measurements divide 150 by the frequency required E.g. $150 \div 14.26500=10.5$ meters

For imperial measurements divide 468 by the frequency required
E.g. $468 \div 14.26500=32$ FT 8.5 inches cut for lowest vswr so to cut for centre frequency
Top band $1.93000=243 \mathrm{ft}$ each leg would then be 122 ft cut for lowest vswr Half wave 64 ft each leg
3.3 MHz 80 meters phone $\sec 3.7600=125 \mathrm{ft}$ each leg 63 ft Half wave 62 ft 2 inch each leg 31 ft 3inch

7 Mhz 40 meters phone sec 7.070066 ft 3inch each leg
Half wave 33 ft 6 inch
14 Mhz 20 met 14.235 32ft 9inch each leg
Half wave 16 ft 5 inch
21Mhz 15 meters 21.235 22ft 2inc each leg Half wave 11 ft 2 inch

28 Mhz 10 meters 16 ft 5 inch each leg Half wave 8 ft 4 inch

All must be fed with 50 ohm coax and must be cut for lowest VSWR. All of these can be stacked in sets of 3 bands assembled then Trim the highest band first as there will be some interaction The BARLS dipole

10 meters $8^{\prime} 6^{\prime \prime}$ trim to size
15 meters 21.264 =each leg 11 ft trim to size
17 meters $=18.16412 \mathrm{ft} 11$ "
20 meters 14,264 16'6: trim to size

